The Challenges of Software Certification

George Romanski
Verocel, Inc.

The safety critical community — those involved in developing and verifying safety critical systems — is very conser-
vative and adverse to change. Meanwbhile, technology is changing rapidly, and there is pressure to adapt systems to
improve their efficiency and safery. This presents a number of challenges. The community has already addressed some;
others are in process. While the guidance on airborne software certification is mature, the issues with software reuse,
military avionics certification, ground-based software, and object oviented technology are still evolving.

Computer—controlled systems pervade
our lives. We take many of them for
granted, although many are critical to our
safety. Dire consequences may result if the
software in an automobile’s computer-
controlled braking system failed during a
highway maneuver. Software faults in the
automobile’s computer may cause the
brakes to malfunction. What can be
done to make sure that this software

does not contribute to the cause of

an accident?

An extreme measure would be to limit
the speed of automobiles to a walking
pace. When automobiles were first
licensed to travel on public highways, a
person carrying a red flag had to walk
in front of them. Clearly this restriction
is impractical, and was abandoned
many decades ago. An alternative is
not setting up the computer system as
the sole means of control. A com-
puter-controlled braking system
could include hydraulic/mechanical con-
trols that provide backup operations when
the computer system fails. However,
this approach may be impracti-
cal for some complex sys-
tems.

A bicycle can turn corners
much faster than a tricycle, but it
requires active control by the cyclist to
maintain balance. Similarly a high per-
formance airplane may be built with an
unstable flight profile. For example, a
paper plane with wings that are level may
swerve and dive during flight, but a plane
whose wings tilt up slightly glides
smoothly. Fighter planes are often built
unstable to make them more agile but
they include movable surfaces. A comput-
er system controls the movable surfaces
and induces stability through control
algorithms.

A modern transport airplane may be
built to have a stable flight profile, but
computers are used to control and opti-
mize aircraft flight. These types of com-
puter systems and their software have a
direct impact on the safety of the aircraft
and its occupants. A level of assurance is
required to provide confidence in this

September 2001

software. In commercial avionics systems
a document called “Software Consider-
ations in Aircraft Systems and Equipment
Certification” is used to provide assur-
ance. In the United States, this document
is called DO-178B and is published by
Requirements and Technical Concepts for
Aviation, Inc. (RTCA) [1].

“Although DO-178B
is referred to as a
guidance document, it
is treated as a stan-
dard that imposes
requirements on the
development and ver-
ification of airborne
avionics systems.”’

DO-178B

Although DO-178B is referred to as a
guidance document, it is treated as a stan-
dard that imposes requirements on the
development and verification of airborne
avionics systems. A Federal Aviation
Regulation lists DO-178B as a means of
compliance that is acceptable to the soft-
ware regulators in the avionics communi-
ty. In the United States, the regulatory
body is the Federal Aviation Authority
(FAA). While DO-178B is not the only
means of compliance, compliance with
the objectives of DO-178B must be
shown if a different approach is used.

In Europe, a similar statutory regula-
tion called ED-12B is published by
EUROCAE. This is the same document
as the DO-178B and was produced by an
international consensus-based committee
representing practitioners as well as regu-
lators.

DO-178B is intended to describe the
objectives of the software life-cycle
processes, the process activities, and the
evidence of compliance required at differ-
ent software levels. The software levels are
chosen by determining the severity of the
failure conditions, which may affect the
aircraft and its occupants [2]. The failure
conditions are named and have corre-
sponding levels identified by letters. For
each level there is a set of process objec-
tives that must be satisfied. An example of
a process objective is A-7.3 “Test
Coverage of low-level requirements is
achieved.” The number of process objec-

tives by software level is shown in Table
1 (see page 16).
The certification agen-
cies have received many
requests to clarify the intent of
DO-178B since its publication in
December 1992. A consensus-based com-
mittee called SC-190 (and WG-52 in
Europe) was formed and tasked to pro-
pose clarifying text. After four years of
work by 150 registered members, a docu-
ment called The Annual Report for
Clarification of DO-178B (DO-248A)
was published by RTCA, Inc. [3]. This
document provides corrections (typo-
graphical and editorial), answers to fre-
quently asked questions (FAQs), and dis-
cussion papers.

A subset of the SC-190 committee is
continuing with a new document for use
in Communications, Navigation and
Surveillance/Air Traffic Management sys-
tems (CNS/ATM). This will result in a
new software assurance document intend-
ed for ground-based (and space-borne)
systems. There are subtle differences
between the way the two application
domains are treated. Airborne systems
undergo a certification process while
ground-based systems go through an
approval process. In the following text
certification materials describe materials
that support certification or approval.
Here are some typical FAQs published in
DO-248A (shortened for brevity):

Q: Is recursion permitted in airborne
applications?

www.stschillafmil 15

Avionics Modernization

Failure Condition DO-178B Software Level Process Objectives
Catastrophic A 66
Hazardous B 65
Major C 57
Minor D 28
No Effect E 0

Table 1: Relationship Between Failure Conditions, Levels, and Objectives

A: Yes! But it must be bounded.

Q: Is source-code to object-code trace-
ability required?

Yes, if the applicant is providing cov-

erage analysis at the source-code level

and the assurance is at level A. No, if
coverage analysis is provided at the
machine-code level.

:If some run-time functions are
inlined, is coverage still required of
the run-time functions?

: Yes! Coverage analysis is required of
all of the code that may be reached
within the address space.

: Can compiler features be used to sim-
plify coverage analysis at object code?

: Yes! For example, short circuit condi-
tions may be used. However, as the
compiler feature is being used as a ver-
ification tool, this feature of the com-
piler must be qualified as a verifica-
tion tool. (Qualification is the process
of assuring that a tool can be used in
place of a verification activity per-
formed manually.)

One of the most discussed topics is
the use of previously developed software
(PDS). Commercial off-the-shelf
(COTY) software is considered PDS as it
may be developed independently of any
specific airborne application. Operating
systems (OS) may be considered to be
COTS software and may have been
developed using in-house development
processes that are not necessarily compli-
ant with DO-178B requirements. These
pose a burden on the user of the OS to
reengineer the verification evidence
required unless it is made available by the
OS developer.

DO-178B makes provisions for
reengineering requirements, design infor-
mation, tests, and review of all artifacts in
accordance with the DO-178B objectives.
The processes must be documented in a
set of plans and evidence must be available
to show that this was performed in a con-
trolled way. DO-178B provides an alter-
native means mechanism allowing devel-
opers to present evidence that is not typi-
cal. The developer has the burden of proof
that the materials presented are acceptable
alternatives to a risk adverse audience.

A:

16 CrossTALK The Journal of Defense Software Engineering

Operating System Issues

An OS takes control of the target machine
on which it runs. It shares resources
between processing threads. The threads
may be represented as processes, tasks, or
co-resident applications, depending on the
nature of the OS. The shared resources
include processor time, interrupts, memo-
ry, and input/output transactions to name
a few. The OS has visibility and control
over application programs and would have
a direct impact on system behavior if the
OS were to malfunction. Because of this
close connection between the OS and the
applications, the OS must have certifica-
tion evidence at least to the same software
level as the systems that it supports. This
means that all certification criteria that
apply to the applications also apply to the
OS. In particular, there must be a level of
confidence that the OS itself behaves
deterministically, and that the underlying
applications will be controlled in a deter-
ministic way.

The level of determinism may be based
on functionality, resources, and time.
Functional determinism can be demon-
strated through testing only if the results of
a function are the inevitable consequence
of its inputs. The function inputs are the
parameters, but may also include global
variables, and possibly external states based
on interrupts. Clearly the more variables
there are, the more difficult it is to demon-
strate functional determinism through
testing alone.

Use of resources must be bounded,
otherwise their consumption will grow
unchecked. This includes the use of
dynamically allocated memory, like the
heap, but also includes a bound on stack
space. The OS used in safety critical sys-
tems may prevent use of dynamic memory
allocation or may restrict this after the sys-
tem completes its initialization. If the OS
does not offer such precautions, then the
application developers must be very cau-
tious to ensure that memory creep does not
cause the system to malfunction at some
point in the future. Application code as
well as the OS affect stack growth. An

operating system will allocate space for the

applications and may allot some of this
space for control data structures such as
task control blocks. After this allotment,
the operating system functions typically
consume little of the stack, and release it as
soon as the call is finished. It is up to the
application programmer to estimate the
worst-case stack usage space. Users typical-
ly allow large margins to the space allocat-
ed to ensure that the resource is not entire-
ly consumed.

Time is a difficult resource to measure
and allocate. In an effort to improve
processor throughput, hardware engineers
have added many improvements to mod-
ern computing devices. Cache memory,
pipeline processing, and co-processors may
improve performance tremendously, but
they also make it very difficult to put an
absolute bound on the worst-case execu-
tion time for a particular function.
Nevertheless, the performance improve-
ment through the use of cache memory
can be so dramatic that in many situations
it becomes the overriding concern. The
performance of an OS function may be
dependent on the contents of instruction
and data cache memory.

This varies depending on the execution
paths taken through the applications as
they run. In practice, timing measures of
OS functions add little to the question of
deterministic behavior. Typically, the appli-
cation execution time is measured under
estimated worst-case conditions to deter-
mine if the time bounds can be met.
Measures of tasking performance under
these worst-case conditions can be used to
calculate the total throughput, and then
determine whether deadlines of the tasks
cooperating in the application can be met.
This leaves the burden of timing measure-
ment and verification to the application
developer.

The COTS Reuse Argument

Software may have been developed and in
service for a long time with no problems. If
we have a record of the behavior, then
intuitively it seems that we should be able
to trust this software. Use-of-service histo-
ry as a means of obtaining approval credit
is an attractive option to help reduce certi-
fication costs. The notion is that if an
application is used and its service history is
recorded (frequency, severity, and distribu-
tion of faults found) then by extrapolation,
similar behavior would be expected in
applications running the same software in
equivalent environments.

Low fault rates in the past may mean
expected low fault rates in the future. This
reasoning is particularly attractive for com-

September 2001

panies that developed systems for military
airplanes who want to reuse the same tech-
nology for commercial aircraft. However,
this approach should be used with cau-
tion. At the higher software assurance lev-
els, requirements for coverage analysis are
intended to provide a measure of the
absence of unintended functionality. By
showing what code is executed in the
application and what is not executed, the
shortcomings of the requirements-based
testing process can be estimated. If any
code is discovered that cannot be traced to
a requirement, then this dead code must
be removed. Use-of-service history will
not show presence of unintended func-
tionality, so it does not satisfy the coverage
analysis objective.

Coverage analysis is also used to show
the effectiveness of testing. The type of
coverage analysis required by DO-178B
depends on the software level. At level C,
only statement coverage is required. At
level B, all entry points and exit points as
well as all decisions and their outcomes
must be covered in addition to all state-
ments. At level A (the highest), coverage
requirements of level B in addition to
Modified Condition/Decision Coverage
(MC/DC) is required.

MC/DC analysis is a unique require-
ment to DO-178B. Its goal is to show that
each condition has its intended effect on
the outcome of a decision. Applicants try-
ing to reduce the scope and cost of the test
and analysis effort have applied a number
of different interpretations. To ensure that
the interpretations are common, the SC-
190 committee produced clarification
through a discussion paper. This paper is
included in the DO-248B document.
Here are some valid approaches: perform
coverage analysis at the machine-code
level, show source-to-object code traceabil-
ity together with coverage analysis at the
source-code level, or develop multiple vot-
ing systems and use different languages
where each compiler used is created by a
different developer.

A draft policy for reusable software
components (RSC) has been developed to
allow certification evidence and its
approval to be reused when it exists. The
intent of this policy is not aimed at reusing
components in different variants of a par-
ticular system being deployed. If a certified
system exists, certification credit can be
taken for components when moving the
system to a different aircraft. This is
already covered by other regulations.

A developer producing a software com-
ponent and developing certification mate-
rial in the absence of a specific avionic sys-
tem may be creating a reusable software

September 2001

component. The FAA does not charge for
its approval services, so it does not deal
with such developers directly. (Otherwise
the burden of dealing with software suppli-
ers directly would be overwhelming.)

Airframe or subsystem manufacturers
(such as the developer of an aircraft or a
flight management system) may establish a
certification liaison with the FAA as an
applicant. As part of the delivery of mate-
rials for review, the applicant may submit
DO-178B compliant materials for the
RSC. This submission will also include
information such as proposed software
level, identification of the processor, and
identification of the compiler used. Once
approval of the airframe or subsystem is
obtained, the FAA may provide a letter to
the RSC developer and to the applicant
documenting certification credit. This let-
ter either reduces or eliminates certification
effort required on a new project.

Military Avionics

To reap the benefits of a wider audience
and participation by practitioners outside
the Department of Defense (DoD)
domain, the agency gradually moved
towards standards that were co-developed
with industry members. DO-178B is a
consensus-based guidance document that
has been adopted by the DoD for certain
safety critical systems. Development of cer-
tification evidence in accordance with
DO-178B is not undertaken retroactively;
new projects and updates to projects do
adopt this guidance document in place of a
military standard. The initial draft policy
focuses on transport aircraft. Fighters,
bombers, and unmanned vehicles are
excluded. The policy is directed at Com-
munications Navigation and Surveil-
lance/Air Traffic Management (CNS/
ATM) systems, both airborne and ground
based. The FAA owns the U.S. airspace.
The U.S. Air Force is required to show that
its transport planes do not degrade airspace
safety during peacetime.

It could be argued (in jest) that military
pilots have parachutes and cannot sue the
government if an airplane malfunctions, so
the software levels for the systems can be
lowered. In practice, the software quality is
taken seriously, but not all of the objectives
of DO-178B are applicable in the DoD
setting. The regulations, policies, and pro-
cedures within the FAA have evolved to
encompass the DO-178B document.
Certification liaison procedures are part of
the approval process documented in DO-
178B. An airborne system development
and certification project is encouraged to
form a relationship with an Aircraft

The Challenges of Software Certification

Certification Office of the FAA very early
in the life cycle of the project. Throughout
the project lifetime, FAA personnel and/or
designated engineering representatives
(DERs) oversee all steps through the proj-
ect phases. DERs are engineers who have
been accepted through an approval process
to act on behalf of the FAA. These engi-
neers may provide guidance to the devel-
opers and have the authority to approve
the materials developed for certification.

This certification liaison process is still
to be developed within the DoD. On mil-
itary projects, the contractual and
approval processes and adherence to mili-
tary standards have been used to measure a
project. The DoD approach has been to
contract with a supplier to develop a sys-
tem subject to the provisions of an agreed
contract. The FAA aircraft certification
approach is much more open-ended. It
allows applicants to spend their money
seeking certification approval from the
FAA.

The DO-178B guidance document
lists objectives that must be satisfied, but it
does not prescribe how. Through the certi-
fication liaison and DER review/approval
process, the process plans should be devel-
oped and agreed upon. As long as certifi-
cation materials are produced according to
the documented processes, they should be
acceptable during the final audits before
approval.

Ground-Based Systems

The ground-based community (CNS/
ATM) faces a similar challenge to the
DoD as both funding and approval are
bestowed from the same organization.

The Air Traffic Management systems
have growth challenges. Many of the con-
trol centers use systems that are becoming
obsolete, while at the same time air traffic
continues to increase. The projected
growth is 6 percent annually in Europe
and 4 percent in the United States. This
comes at a time when the capacity loading
is already very high.

The promise for the future is to
improve capacity and safety through the
introduction of free flight. Current tech-
nology allows commercial airplanes to fly
from one airport to another inside pre-
scribed corridors at prescribed heights.
This reduces the workload of air traffic
controllers and allows them to focus on
maintaining separation between aircraft.
The free-flight system will allow an aircraft
to choose its preferred climb from the
departure airport, its preferred path, and
its preferred descent to the arrival airport.
Clearly if each aircraft were to take this

www.stsc.hillafmil 17

Avionics Modernization

approach independently, the result would
be chaotic and dangerous.

By disclosing its intended behavior, an
airplane may join the set of aircraft man-
aged by a ground-based system. There is
much data to be accumulated, shared, and
tracked to avoid possible conflicts. Static
information must be uploaded to the
plane describing the local terrain, airways,
and other airport information. Dynamic
information is uploaded as required
throughout the flight, including weather,
possible warnings, capacity constraints, and
special use airspace schedules (e.g., military
requirements). Given this information the
pilot can produce a flight plan that results
in a filed flight trajectory. This can be treat-
ed as an object, which will then be used by
ground-based systems.

During flight, the pilot may wish to
change the flight plans, but can only pro-
pose a change that must be approved by the
ground-based system before it can be
adopted. Furthermore, the actual trajectory
is recorded and transmitted by the aircraft,
so that the ground-based systems can track
it as an object. The accumulation of this
airspace data allows traffic density predic-
tions to be calculated, and dynamic route
structure objects to be produced [4].
These objects — produced, consumed and
manipulated by computers — may be mod-
eled and even implemented through some
Object Oriented Technology. There are
languages that support these concepts and
provide a direct way of manipulating them.
The implementation of the free-flight ini-
tiative has still not addressed such issues.
The FAA is evaluating the problems of
Object Oriented Technology.

Object Oriented Technology

There is pressure from industry to use
object oriented paradigms in the develop-

ment of safety critical software. The expec-
tation is that, as in other industry sectors,
such programming will lower the develop-
ment costs. There is some reluctance by
regulators to approve this type of program-
ming as it introduces concepts of informa-
tion hiding, polymorphism, and inheri-
tance. This makes the coupling between
code and data less obvious to an auditor. It
may invoke run-time support code that
creates and destroys these objects dynami-
cally, depending on the scope of the objects
during execution. The timing and resource
usage of such run-time programs make the
application less deterministic, complicating
the analysis and approval of such systems.
It is expected that ultimately some compro-
mise will be reached and a subset of the
object oriented programming paradigm
will be adopted, thereby satisfying the con-
cerns of determinism and providing the
benefits of this new technology.

Conclusion

Although a number of challenges remain,
the industry is very focused on safe air
transportation. It is through tremendous
vigilance and determinism that the indus-
try has a good safety record. It can be
improved, and these on-going initiatives
will contribute to safer flight. ¢

References

1. DO-178B. Software Considerations in
Airborne Systems and Equipment
Certification. RT'CA, Dec. 1, 1992.

2. AC 25-1309-1A, Advisory Circular,
Federal Aviation Administration.

3. DO-248A. Annual Report for
Clarification of DO-178B. RTCA,
Oct. 6, 1999. (DO-248B to be pub-
lished in 2001.)

4. National Airspace System Concepts of
Operations. RTCA, Dec. 13, 2000.

Resources

For a complete listing of RTCA docu-
ments please see <www.rtca.org>.

The FAA Flight Standards Service pro-
vides links to the regulatory Web sites
at the following Web site <www.faa.
gov/avr/afs/fars/far_idx.htm>.

About the Author

George Romanski has
specialized in the pro-
duction of software
development environ-
ments for the past 30
years. Romanski was
vice president of Technology at
EDS/Scicon, president of
Engineering at Alsys and director of
Safety Ciritical Software at Aonix.
Romanski also serves the safety-critical
industry as a member of the HRG
(Annex H Rapporteur Group) for the
Ada95 ISO standard addressing safety
and security issues as well as the
Requirements and Technical Concepts
for Aviation (RTCA)/SC-190 commit-
tee working to provide clarification of
DO-178B for avionics and ground-
based systems. Romanski is president
of Verocel, a company specializing in
the verification of software, and in the
development of tools that help in this
process.

vice

Verocel, Inc.

234 Littleton Road, Suite 2A
Chelmsford, MA 01886

Phone: (978) 392-8860

E-mail: romanski@verocel.com

We accept article submissions on all software-related topics at any time.
Please follow the Author Guidelines for CrRoOSSTALK, available on the Internet at:
www.stsc.hill.af. mil/crosstalk/xtikguid.pdf

Call for Articles

If your experience or research has
produced information thal could be useful
to others, CROSSTALK can get the word
out. We are especially looking for articles
in several specific, high-interesl areas.
Upcoming issues of CrossTaLk will
have special, yet nonexclusive, focuses
an the following tentafive themes:

System Requirement Risks
March 2002
Submission Deadline: Oct. 24, 2001

Software Estimation
Aprit 2002
Submission Deadlie: Nov. 21, 2001

Forging the Future of Defense
Through Technology

May 2002

Submission Deadiine: Jan. 2, 2002

18 CrossTALK The Journal of Defense Software Engineering

September 2001

